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ABSTRACT

)The generalized multivariate median of H. Oja is used to define a

multivariate notion of quantile, or rank, and to define a measure of

scatter of multivariate linear models. The latter, when applied to the

one- and two-sample bivariate location models, yields atfine invariant

analogs of the Wilcoxon rank-sum and signed-rank tests, and of the

corresponding estimates.

KEY WORDS: aft me invariance, bivariate location model, dispersion

measures'. generalized median, multivariate linear models, multivariate

quantile, multivariate rank, permutation tests, R-estimates, Wilcoxon

tests. .Ac1 ~
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1. INTRODUCTION

This paper introduces a notion of multivariate quantile or rank

and uses it to develop affine invariant analogs of rank tests and

R-estimates in the one- and two-sample bivariate location models.

Bickel (1964) investigates the non-affine invariant vectors of

medians and medians of pairwise averages. These are the Hodges-Lehmann

(1963) R-estimates derived from the application of the univariate sign

and Wilcoxon signed rank statistics, respectively, to the components.

In comparing these estimates with the sample mean vector, Bickel

concludes that despite encouraging results on robustness and efficiency

there remains some pathological behavior of these estimates when the

components of the data vectors are highly correlated. He further

concludes that the bad behavior my be due in part to the lack of

affine invariance of these estimates. Bickel (1965) draws a similar

conclusion for tests based on vectors of univariate rank statistics. A
-° A

different robust estimate, the spatial median e, which minimizes the sum

of distances from e to the data vectors also fails to be affine

invariant; see Gower (197h) and Brown (1983). In addition, there may

be compelling reasons based on the measurement scales in the mdel to

seek affine invariant rank methods.

Oja (1983) defines a generalized median e which minimizes a

measure of scatter defined by the sum of areas of triangles formed by

taking e along with pairs of data points as vertices. The Oja

generalized median is affine invariant. Oja and Niinimaa (1985) study

the efficiency of the generalized median and, in the case of bivariate

normality, show it to be as efficient as the spatial median.

We introduce a bivariate quantile (or rank) based on the gradient

C",

. . . . .. . . . . . . . . . . . . . . . . . . . .
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of Oja's measure of scatter. We use this quantile to develop affine

invariant tests and estimates in the one- and two-sample bivariate

location models. The tests are analogs of the Wilcoxon signed rank

test and the Mann-Whitney-Wilcoxon rank sum test, respectively, and the

estimates are bivariate analogs of R-estimates. Our approach is

similar to that of Jaeckel (1972) and developed in Hettmansperger (1984,

Chapter 5). We first construct a measure of dispersion of residuals in

a linear model. The dispersion is a linear function of the bivariate

residuals in which the coefficients depend on the size or quantile of

the residuals. This dispersion, which is related to Oja's scatter

measure, provides estimates through minimization and tests from its

gradient vector.

The quantiles and generalized median are discussed in Section 2

and the dispersion based on quantiles is defined in Section 3. The

two- and one-sample location models are treated in Sections 4 and 5,

respectively, and the statistics are illustrated in Section 6.

2. THE BIVARIATE QUANTILE

Let xl,...,Xn,e be 2xl vectors and let

(1) T(e) = [ A(xi,xj;e)
i<j

where A(xi,xj;e) is the area of the triangle formed with xi,xj, and e as

vertices. This is the Oja (1983) measure of scatter. The value e

which minimizes T(8) is the Oja generalized median of the bivariate

sample.

%' " ,-•-.• .-,. z. , .-. ".""" " " "" ,"". ."-"." '". "'.."..".."....".."" "' " " ' • " " -' ' ".
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Given xT _ (xl,x 2 ), define iT (-x2 ,xl). Then i has the same

length as x and is rotated through w/2 radians in a counter clockwise

direction. It follows that

(2) T(e) - '- j- i)T(e-xi) I.
i<j

The quantile vector Q(8) is defined by Q(e) - VT(e), the vector of

partial derivatives of T(e). Thus the bivariate quantile has both

magnitude and direction. Quantiles with largest magnitude correspond to e

being near or beyond the convex hull of the sample. T ose with small

magnitude correspond to points well embedded in the sample. Further, -Q(e)

provides the direction of steepest descent on the convex surface defined by

T(e) and points towards the mass of the sample. An equivalent definition

of the Oja generalized median e is

(3) Q(e) ' o,

where "40" means that fQ(8)j is a minimum. The equation (3) may determine

a single point or a convex set of points from which the median can be

selected; see Oja (1983).

Note that

T (kj- i (e x ) det i x i x ).

- Now, from (2), it is easy to show that

I'I
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> e- <u(xixJ;e)

where

(5) u(xi#x ;8) - sgn{det (i xk I).

The vector u(xi,xj;e) has magnitudel x-xj and direction perpendicular to

and away from the chord defined by (xi,xj) toward 8; that is, u(xi,xj;8) -

xi-xj if the order xi,xj,O is clockwise, but xj-xi if the order xixj,e is

counter clockwise. Hence, Q(8) is V the sum of "repulsion" vectors

u(xixj;e) away from the chords defined by pairs of points (xi,xj) toward

8.

Using the geometry described in the previous paragraph, or by

algebraic manipulation of (4), it follows that

(6) 1 Q(xi) - 0,

so the sample quantiles are centered.

In addition, the following observations can be helpful in determining

quantiles or locating the generalized median:

(i) When three chords form a triangle, the sum of repulsion vectors is

zero for any 8 within the triangle; see Figure 1. More generally,

if A is a closed, convex loop of chords, the sum of repulsion

vectors is zero for any 8 in A.

(ii) If e is on the line extended indefinitely through two data points,

then the repulsion vector due to those points is zero.

% %
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(iii) If e lies outside of a triangle of chords, then the sum of repulsion

vectors due to the chords is twice the repulsion vector of the most

transverse side. See Figure 1. Calculating rules are possible for

other convex polygons, but they are too complicated to be of much

practical value.

The graph of all lines through pairs of data points (xi,xj) and

extended indefinitely in both directions breaks the plane into many

polygonal regions. The quantile Q(e) changes as e passes from one region

to another. The quantile on a border is the average of the quantiles in

the contiguous polygons. A computer algorithm is the most efficient way of

computing quantiles. The following remarks provide some insight into the

computation of quantiles without using a computer.

(a) To find Q(M) use (i) to eliminate as many closed loops of

chords containing e as possible. Parts (ii) and (iii) often provide

further reductions. Then Q(8) is the sum of the repulsion vectors

due to the remaining chords.

(b) To locate the generalized median e (or median set) delete successive

closed loops using (i) and beginning with the convex hull and

moving inward. When no further reduction is possible, the resulting

configuration of extended chords must be examined to find e that

minimizesl Q(0)1. Generally, all that remains is either one region,

whence all 0 inside are medians, or one region cut by concurrent

diagonals, whence the intersection point of the diagonals is the

median. It is quite possible, however, that 6 is on a border

between polygonal regions. This method is equivalent to deleting

polygons in stages; at each stage, delete all regions with a side

which Is part of the current outer boundary. A new boundary

whic% is o.
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* forms at each stage. Stop when there are no further boundaries to

eliminate. See Figure 2.

Thus the quantile vector generalizes the idea of a centered rank in a

univariate sample. The magnitudes I Q(xi) j order the depth of the

observations in the sample, and the directions -Q(xi) point toward the

center of the data.

In the next section we introduce a measure of dispersion based on the

quantiles. We show that it is related to the Oja scatter measure (1).

- Put Figures 1 and 2 about here -

3. DISPERSION

Jaeckel (1972) derived R-estimates in the linear model from a measure

of dispersion of the residuals. In the univariate linear model, let the

T T
residual ri be given by ri - yi-a-ziO where zi is a lxp row vector of known

values, 0 is a pxl vector of unknown regression parameters and a is an

unknown scalar intercept parameter. Then an R-estimate of B is defined as

the vector B that minimizes

n T T
(7) D(O) [Rank(yi-zB) - (n+l)/2(yi- zi8).

i i

This dispersion measure is invariant with respect to a. Jaeckel showed

that B generalizes the notion of an R-estimate from simple location models

to the linear model. McKean and Hettmansperger (1976) developed tests for
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HB - 0, based on (7), where H is a specified qxp matrix. See

Hettmansperger (1984, Chapter 5) for the details.

The multivariate linear model can be built by appending univariate

linear models in the following fashion:

Let Y be an nxq matrix in which the n rows are independent random vectors

such that

(8) EY - E ZO

where Z is an nxp matrix of given regression constants and B is a pxq

matrix of unknown parameters. If y(i) and OM') are the ith columns of Y

and 0, respectively, then EY(i) - ZO(i) is the univariate linear model

described in the previous paragraph.
~T
Let ri - yi - BTzi denote the ith qxl residual vector where zi is the

ith row of Z. Then (7) becomes

(9) D(S) . X QT(ri)ri.

In the following sections we will consider the special cases of the two-

and one-sample bivariate location models. First, however, we will show

that in the bivariate case (q - 2), D(O) given by (9) is related to Oja's

scatter measure (1).

.....................................
a - S *Sl- - - - -
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* Theorem.

(10) D(O) = h [ [ A(ri  ,rk )
i<j<k ir

Proof. Since [ QT(ri) = 0 we have { QT(ri)rj = 0.
i

Hence,

D(B) = T

i

= ) QT(ri)(ri-rj)

. 12 sgn det 1Ik i (k,_j)T(rirj)

i j<k

= I I A(rjrkri)
i j<k

= 1 1 1 A(rj,rk,ri)

i jk

= 112.8. [ [ : A(rj,rk,ri)
i<j <k

Thus, our dispersion measure is proportional to the sum of areas

of triangles with residuals at the vertices. The scale invariant

R-like estimate is the matrix 8 that minimizes this sum of triangular

areas.

4. THE TWO SAMPLE LOCATION MODEL

In the bivariate two-sample location model the matrix 8 in (8) can

be replaced by a vector. The intercept part of the linear model does

not affect the difference in locations. Accordingly, in the bivariate

two-sample problem there are nI observations Xl,...,xnl and n2

observations Yl,...,Yn2. Let A be the location shift vector applied to
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the y- sample, so that the residuals are either xi or yj-A. Then the

terms of D are areas of triangles whose vertices number s from the

x-sample and 3-s from the y- sample, for s = 0,1,2,3. The next result

shows that, similar to the univariate case, the dispersion depends on

the y-x differences.

Theorem.

(11) D(A) = Iconstant + X A(yk-xi,yk-xj,A)
k i<j

+ I A(yj-xi,yk-xi,A)}

i j<k

Proof. Apply D in (10) to the combined samples. Note that areas are

not affected by the same displacement applied to all three vertices or

by sign changes. Hence, areas that involve three x's or three y's do

not depend on A. We now have

D(A) = 4{constant + X A(xi,xj,Yk-A)

k i<j

+ I A(yj-AYk-Axi)},

i j<k

but A(xi,xj,yk-A) = A(Yk-xi,Yk-xj,A) and

A(yj-A,yk-A,xi ) = A(yj-xi,Yk-xi,A). This completes the argument.

The gradient of D(A) is given by

(12) s(A) k/2 X i u(yk-xi,yk-xj;A)
k i~j

+ 1 2 u(yj-xiYk-xi;A).

i J<k

It is sufficient to consider testing the null hypothesis HO: A = 0

against either a general alternative Hl: A 0 or some directional

4.

4 .oi
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alternative stating that A differs from 0 in some fixed direction.

A test based on the quantiles uses S = S(O), the gradient of D(A)

evaluated at the hypothesized value.

The next result shows that, like the univariate rank sum

statistic, S reduces to the sum of the x-quantiles in the combined

sample.

Theorem. n1

(13) S = Y Q(xi)
i-I

Proof. From (12) we have

2S = u(-xi,-xj;-yk) + ; u(yj,Yk;xi)
k i<j i J<k

= [ X u(Yj,Yk;xi) - ) u(xi,xj;yk).
i j<k k i<j

Note that u(xi,xj;Yk) + u(xj,Yk;xi) + u(Yk,xi;x j ) = 0 and recall from (6)

that [ u(xj,xk;xi) = 0. With these facts, 2S reduces to
i j<k

[ u(yj,yk;xi) + I I I u(xj,yk;xi)
i j<k isj k

+ I I I u(xj,xk;xi)
i J<k

which, when compared to (4), is seen to be the result stated in the

theorem.

The test statistic is a clear analog of the Mann-Whitney-Wilcoxon

rank sum statistic in the univariate case. The set xI + A,...xnl + A

is one of ( h + n2 ) equally likely subsamples of n1 bivariate observationsni

drawn from the combined x + A and y set of size n1 + n2. Hence,

standard permutation arguments show that S(A) = Q(xi+&) has
-:1

.. ... --- ,* m mm ll llll IIU i - ..l~ - -



expectation 0. The natural estimate of A is A such that S(A) 0.

This is the analog of the Hodges-Lehmann (1963) estimate of shift in the

univariate two sample problem. Equation (12) shows that A is an Oja

generalized median computed on the cross sample differences.

Under the null hypothesis H0 : A = 0, the permutation argument

shows that ES = 0 and the covariance matrix of S is

) n1n2 n1I+n 2
(li&) C= 1n~ 2 y21)= Q(zi)QT(zi)

(nl+n 2)(n1+n_-l) i-I

where Zl,...,znl+n2 represents the combined sample. Furthermore, S

will be approximately bivariate normal for large nl,n 2.

An approximately size a test for HO: A - 0 against HA: A * 0 rejects

H0 if STC-lS > X2 (2) where X2 (2) is the 1-a percentile from
a a

a chi-square distribution with 2 degrees of freedom. To test HO: A - 0

against an alternative specifying a fixed direction with unit vector v,

project on v yielding vTS with null covariance matrix vTCv. We reject H0

if vTS/(vTcv) > z where z is the 1-a percentile from the standard normal

distribution.

5. THE ONE SAMPLE LOCATION MODEL

Suppose xl,...,xn is a sample from a bivariate distribution with the

property that x-e and 8-x have the same distribution. Then 8 represents

the center of the distribution.

In testing HO: e - 0, it is difficult to develop a simple sign-test

analog based on the Oja generalized median e, (6). The natural test
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function is Q - Q(O) - u(xi,xj;O),but a simple randomization argument
i<j

does not provide the null distribution. The main goal of this section is

to develop an analog of the Wilcoxon signed rank test.

V A standard device for producing one-sample univariate rank methods

from two-sample procedures is to create a second, artificial sample that

consists of the negatives of the original sample. When we consider the

univariate rank of -xl, say, relative to Xl,...,X n the result is the

number of sums xl+xj, j=l,..,n [or averages (xl+xj) / 21 that are negative.

By doing this for each data point, we find that the two-sample rank

method produces counts of the signs of the pairwise sums or averages,

and these counts are related to the ranks of the absolute values; see

Hettmansperger (1984, Section 2.3). Hence, we arrive at the one sample

signed rank statistics. This device, in the bivariate case, allows us

to avoid the problem of introducing absolute values in the plane.

Returning to the bivariate case, let -X. be the second,

artificial sample. For inference on 8, following the discussion in the

previous section, let A = 20 and consider

a

(15) S(A) - : Q2n(-xi+A)
i=1

where the subscript 2n on Q indicates that the quantile of -xi+A is

computed relative to -xI+h,...,-xn+a,xI,...,xn .  The next result shows

that we need only consider Qn(-xi+A); that is, the quantile of -xi+A

relative to xl,...,xn.

Theorem.

a

(16) S(A) = 2 [ Qn(-xi+A).
ii



- 13 -

Proof. Let A - 0 without loss of generality. Now

S4Q 2n(-xi) = I I u(xjxk;-Xi)
. k

+ I u(-xjxk;-Xi) + ) LU(xj,-x k ;-x i )

j k

+ I I u(-xj,-Xk;-Xi)

j k

Ai + Bi + Ci .

Summing on i, Ci = 0. Since

u(a,b;c) = -u(b,c;a) - u(a,c;b) and u(a,b;c) = -u(-a,-b;-c),

jBi = 1-u(xk,-xi;-xj) - u(-Xj,-xi;xk)
i j k

- u(-xk,-xi;xJ) - u(xj,-xi;-xk)}

I I I{-u(x,--Xi;-Xj) + u(xj,xi;-Xk)

+ u(xk,xi;xj) - u(xj,-xi;-xk).I

Group the first with the fourth terms and the second with the third

9 terms to get JBi = - .Bi + 2IAi. Hence, JBI = IAi and

41Q (-xi ) = 2JA1

= 2.2 [ I u(xj,xk;-Xi)
i J<k

= 8 F lt I I u(xj,xk;-xi)

J<k

which reduces with an application of (4) to the result stated in the

theorem.

This theorem shows that the estimate of location 8 = A/2 is

defined by S(A) 0 0. A further interpretation is possible. Note that

* ..- .u*
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Qn(-xi+A) - [ u(xj,xk;-Xi+A)
j<k

- I I u(,xi+xj,xi+xk;&).
J<k

Hence,

S(A) = k Z u(xi+xj,xi+xk;A),

j<k i
or

(1)s(e)= u' 2 ; ).
J<k i

Analogous to the univariate Hodges-Lehmann estimate which is the

median of the pairwise averages, the bivariate estimate e is an Oja

generalized median computed on the coupled pairs displayed in (17). In

effect, (17) shows how the data can be symmetrized before the median

operation is applied.

For testing the hypothesis HO: e - 0 we could use either IQ2n(-Xi) or

lQn(-Xi). Under HO: e - 0 the randomization distribution of XQ2n(-Xi) is

easier to work with. The first line of the proof of (16) shows that

Q2n(-Xi) - -Q2n(Xi)• Under the null hypothesis each has probability 1/2 so

that the statistic S - XQ2n(-xi) has ES - 0 and covariance matrix
i

TC - XQ2n(-X)Q2n(Xi).

Tests of Ho: e - 0 are carried out as described in the last paragraph of

the last section. The test statistic is a scale invariant bivariate analog

of the Wilcoxon signed rank statistic.

6. EXAMPLES

d* In this Section the two-sample and one-sample bivariate rank methods

are illustrated through application to two data-sets. First consider the

s
* pw, , * .4i. ., " . L ._ ,. . = ..M , - . ,V v *-,,% . -

-
,oj-,, i . o- ., ..- .. ,. . .. , ' * . .. a , ,,,,-,o- . . ,
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two sample test. In the following data from Hettmansperger (1984, p.291),

the data consist of levels of two biochemical components in brains of mice,

xT  (Xl,X 2 ).

Control group

xl: 1.21 0.92 0.80 0.85 0.98 1.15 1.10 1.02 1.18 1.09

x2 : 0.61 o.43 0.35 o.48 0.42 0.52 0.50 0.53 0.45 0.40

Treatment group

Y1: 1.40 1.17 1.23 1.19 1.38 1.17 1.31 1.30 1.22 1.00 1.12 1.09

Y2: 0.50 0.39 0.44 0.37 0.42 o.45 0.41 0.47 0.29 0.30 0.27 0.35

The corresponding quantiles of the control group observations

among the combined control plus treatment sample are

x1 : .89 -9.01 -8.82 -9.40 -6.78 -.51 -3.25 -6.24 2.28 -3.04

x2 : 18.53 3.65 -6.26 9.37 .76 15.70 13.63 15.85 5.27 -4.56

and the sum of quantiles is ST - (-43.88, 71.94). The standardized

test of no location shift between control and treatment populations is

2
STC-IS . 15.137, which is highly significant when referred to X2- By

comparison, a univariate rank method applied componentwise yields

2
X2 " 14.22; see Hettmansperger (1984,p.292).

For a one-sample test, the following data from Hettmansperger (1984,

p.28 6 ) are systolic and diastolic blood pressures of 15 adult male Peruvian

Indians.

%
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x1  170 125 148 14o lO6 108 124 134 116 114 118 138 134 124 114

X2 76 75 120 78 72 62 70 64 76 74 68 78 86 64 66

To test that the center of the bivariate population is (120,80),consider

the sample of (Yl,Y2) = (xl-120, x2-80) values and the reflected artificial

sample of values (-Yl, -Y2). The quantiles of the reflected sample among the

combined sample are

Yj -3271 -1441 -1205 -2814 2064 944 -1346 -2241 596

Y2 1145 1579 -3184 1190 1321 2858 2522 3276 602

Yl 1052.5 -410 -2483 -2298 -1384.5 220

Y2 1088.5 2822 1238 -552 3634.5 2911

and the quantile sum is ST - (-14017, 22469). The standardized statistic

2STC-1S 8.49, highly significant when referred to X2. The corresponding

2
X2 for the componentwise univariate rank method has the same value; see

Hettmansperger (1984,p.287-).
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